
Eur. Phys. J. B 5, 395–402 (1998) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
Springer-Verlag 1998

Interaction versus dimerization
in one-dimensional Fermi systems?

C. Schustera and U. Eckern

Institut für Physik, Universität Augsburg, 86135 Augsburg, Germany

Received: 11 February 1998 / Revised: 1st April 1998 / Accepted: 30 April 1998

Abstract. In order to study the effect of interaction and lattice distortion on quantum coherence in one-
dimensional Fermi systems, we calculate the ground state energy and the phase sensitivity of a ring of
interacting spinless fermions on a dimerized lattice. Our numerical DMRG studies, in which we keep
up to 1000 states for systems of about 100 sites, are supplemented by analytical considerations using
bosonization techniques. We find a delocalized phase for an attractive interaction, which differs from that
obtained for random lattice distortions. The extension of this delocalized phase depends strongly on the
dimerization induced modification of the interaction. Taking into account the harmonic lattice energy, we
find a dimerized ground state for a repulsive interaction only. The dimerization is suppressed at half filling,
when the correlation gap becomes large.

PACS. 71.10.-w Theories and models of many electron systems – 75.10.Jm Quantized spin models

1 Introduction

Recent experiments on CuGeO3 [1] and NaV2O5 [2,3],
which show at low temperature a transition to a non-
magnetic ground state accompanied by a structural tran-
sition, led to renewed interest in spin-Peierls systems, as
well as in the more general question of structure ver-
sus correlation induced metal-insulator transitions. The
model of spinless fermions, which we consider here in de-
tail, describes certain aspects of both, and it contains,
as a special point in parameter space, the experimentally
relevant isotropic Heisenberg antiferromagnet. In addi-
tion, the model contains, in the limit of an Ising type
interaction, a scenario which is closer to that found for a
more realistic model, including the electron spin, namely
the Hubbard-Peierls model. Here we concentrate on the
spinless fermion model, which nevertheless shows a sur-
prisingly rich phase diagram (at zero temperature) as a
function of interaction and dimerization.

In the next section, we introduce the various repre-
sentations of the model. In Section 3, we quantitatively
determine the extension of the delocalized phase, which
was predicted for an intermediate attractive interaction.
Thereby we identify the region where the fermion-phonon
coupling is irrelevant, i.e. the ground state remains ex-
tended. In Section 4, we consider a repulsive interaction,
where we find that a stable dimerization develops. For a
very strong interaction the dimerization is reduced again,
because conflicting ordering occurs. In the summary,
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Section 5, we present the u–V phase diagram, as well as
the results for the dimerized state.

2 The model

As a starting point for the study of a general spin-Peierls
system in one dimension, we consider an XXZ model with
a dimerized interaction in a local magnetic field; the latter
can be considered as a staggered magnetic field resulting
from the surrounding chains [4], or resulting from random
magnetic impurities. In the following, we concentrate on
the dimerization-induced modification of the interaction,
and, for comparison, include the magnetic field only occa-
sionally. Furthermore, we neglect frustration effects which
arise from next-nearest-neighbor couplings. Thus we start
with the following Hamiltonian:

Hspin = −
M∑
n=1

Jn(u)
(
σxnσ

x
n+1 + σynσ

y
n+1 +∆σznσ

z
n+1

)
+

M∑
n=1

(
−hnσ

z
n +

K0

2
u2
n

)
, (1)

where Jn(u) = J(1 − (−)nλJu); the local lattice distor-
tion, un, is assumed to be given by un = 2(xn − x0

n)/a =
(−1)nu. For the “clean” XXZ model, i.e. for u = 0,
hn = 0, one finds three phases: a ferromagnetic phase
for ∆ ≥ 1, a gapless phase for −1 ≤ ∆ < 1, whose
low lying excitations are given by those of a Luttinger
liquid, and an antiferromagnetic phase for ∆ < −1.
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The spin model is experimentally most relevant for ∆ =
−1, i.e. the isotropic antiferromagnetic Heisenberg case.
The corresponding fermion model is obtained via the Jor-
dan Wigner transformation:

σ−m = e−iπ
∑m−1
l=1 nlcm, σ+

m = (σ−m)+,
σzm = 2nm − 1, nm = c+mcm .

(2)

It is customary to change the notation: J = t, J∆ =
−V/2, and εm = −2hm; furthermore we now assume that
the coupling to (static) phonons can be varied indepen-
dently in the hopping and the interaction. The result is
the following:

Hfermion = −
∑
m

tm(u)
(
c+mcm+1 + c+m+1cm

)
+
∑
m

Vm(u)nmnm+1

+
∑
m

εmnm +M
K0

2
u2, (3)

where tm(u) = t(1−(−)mλtu), Vm(u) = V (1−(−)mλV u).
Furthermore, we consider twisted boundary conditions,
c0 = eiφcM . The length of the chain is L = Ma, the
number of electrons N , and the filling n0 = N/M . In ad-
dition, we restrict ourselves to half filling, and set t = 1
and λt = 1 in some of the formulas below. The correspond-
ing instabilities in the fermion model are at V = −2, to-
wards a phase separated state, and at V = 2, to a charge
density wave (CDW) state. (Note that at V = 2, the 4kF -
backscattering process becomes relevant [5].) Numerically
this CDW state is difficult to determine, because, for finite
systems, the hopping lifts the twofold degeneracy of the
ground state via a symmetric superposition, and a uniform
density is found. For the analytic considerations, we use
the fact that the system is a Luttinger liquid in the gap-
less phase, and that the dimerization can be considered a
perturbation. In the bosonized form [6], the Hamiltonian
can be written as follows:

Hboson =

∫
dx

2π

{
v

g
[∂xϕ(x, t)]

2
+ vg [πΠϕ(x, t)]

2

+
2πλu

l0
sin [2ϕ(x, t)]−

πV a

l20
cos [4ϕ(x, t)]

}
,(4)

where Πϕ (=̂ ∂tϕ/πvg) is the momentum conjugate to
the phase ϕ, λ = λtt + λV V n0/2, and l0 is a short dis-
tance cut-off, ≈ 2a. Only the first order correction to the
2kF -process, ∝ V u, has been included. The Fermi veloc-
ity is given by v = (πt sin(2η))/(π − 2η), and g = π/4η,
where η parameterizes the interaction according to V =
−2t cos(2η). Furthermore, the density is given by

1

2
σzn=x/a = ρ(x) − n0 =

∂xϕ

π
+

2

l0
cos (2kFx+ 2ϕ). (5)

Clearly, the term ∝ cos [4ϕ(x, t)], describing 4kF scatter-
ing processes, is responsible for the CDW ordering. For
completeness we like to state that some properties of the

dimerized Heisenberg chain, especially the spectrum, can
also be obtained [7] from the equivalent relativistic model,
the massive Thirring model.

The numerical results, presented below, are obtained
on the basis of the XXZ model, equation (1).

3 Phase transition at attractive interaction

The first conjecture that the dimerized XXZ model un-
dergoes a transition from the dimerized spin singlet phase
to a phase with free spins at ∆ =

√
2/2, was given in [8]

based on a mapping onto the Ashkin-Teller-model. There,
an estimate of the phase boundary, based on a series anal-
ysis, has been given. (Note the different sign convention.)
For the XXZ model in a staggered magnetic field, Alcaraz
[9] again found this critical point on the basis of predic-
tions of conformal field theory. Thus it seems that the peri-
odic distortion of the σzσz-interaction does not change the
point of the transition. In the case of the bosonic model,
assuming an interaction of the form

∑
Un cosnϕ, one finds

the following renormalization group equations [10]:

dUn

dl
= Un

(
2−

n2

4
g

)
+

1

2

∑
n1+n2=n

Un1Un2 . (6)

The critical value or a model containing only a single pe-
riodic term, g = 8/n2, is in accordance with the exact
solution of the sine-Gordon model [11,12]. One concludes
that for the “clean” case (u = 0), there exists an instabil-
ity for g = 1/2, i.e. V = 2. Consequently, considering the
sin(2ϕ)-contribution in (4), we expect interesting effects
for g = 2, i.e. V = −

√
2, provided the dimerization, u,

assumes a finite value.
Applied to our model, the critical behavior near the

transition between a localized and a delocalized state is
determined by the Berezinskĭi-Kosterlitz-Thouless equa-
tions [13]:

du

dl
= u(2− g) (7)

dg

dl
= −

1

2
g2λ2u2. (8)

Considering the bosonized Hamiltonian, the equivalence
of the “staggered” and “dimerized” XXZ model is also
apparent: for the dimerized model, the relevant operator
is proportional to u sin 2ϕ, while for a staggered field, it is
∝ h cos 2ϕ. The phase shift of π/2 corresponds to the cou-
pling to the bond (in the hopping term) versus coupling
to the site. As a consequence, the ground state for the
dimerized model is a spin singlet, with ϕmin = π/2 and
σzn = 0, while in a staggered magnetic field, an antiferro-
magnetic ground state, with ϕmin = 0 and σzn = (−1)n, is
obtained. The critical behavior, however, is the same for
both models.

We numerically verify these predictions and also de-
termine quantitatively the phase boundary between the
localized and the delocalized phase. In addition to the
critical point at u = 0, g = 2, physical arguments suggest
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that the delocalized phase should not exceed the point
u = 1, V = −2: the transition at V = −2, being first
order, is stable against perturbations [8], and for λtu = 1
every second bond is cut and therefore the system clearly
is localized. Compared with the random disorder case [14],
one is tempted to expect – incorrectly – that the delocal-
ized phase is smaller. For the random case, this is due to a
stronger renormalization of g, namely dg/dl = −0.5g2W
[15]; compare this with equation (8).

We will use the phase sensitivity, i.e. the reaction of
the system to a change in the boundary condition, to de-
termine this transition numerically for systems with fi-
nite size. The ground state energy E(φ) depends on the
boundary condition, expressed via the phase φ. In partic-
ular, we determine below the energy difference between
periodic and anti-periodic boundary conditions, ∆E =
(−)N (E(0) − E(π)). Recall that, for a clean system, the
ground state energy and the finite size corrections can
be obtained from the Bethe Ansatz [16]. At half filling
(and for odd particle number), the result, in the Luttinger
regime, is given by [17]

EM (φ)−Mε∞ = −
πv

6M

(
1− 3g

φ2

π2

)
, (9)

where ε∞ is the energy density in the thermodynamic
limit. Thus M∆E = πvg/2, independent of M , for the
metallic state. In an insulator, on the other hand, the sys-
tem cannot react to a twist in the boundary condition, i.e.
M∆E is expected to decrease with system size.

For non-interacting fermions, the finite size corrections
for the Su-Schrieffer-Heger (SSH) model [18], ε∞(u) ∝
u2 lnu, can be determined in an elementary way, with the
help of the Euler-McLaurin formula. However, it is neces-
sary to handle the van Hove singularity at the band edge
carefully for periodic boundary conditions, while for anti-
periodic boundary conditions, this term is absent. With
h = 2π/M , we obtain the following result:

EM (u)−Mε∞(u) =

(
u2

2h
lnu−

u2

2h
ln (
√
u2 + h2 − h)

−
1

2
u+

1

12

h2(1− u2)
√
h2 + u2

−
1

12
h

)
. (10)

Thus, for small systems, h � u, we obtain a correction
linear in u which does not depend on the system size, and
a correction to the u2 lnu-term:

≈ −
1

2
u−

u2

2h
ln

u

2h
,

which we plot in Figure 1. For large systems, h � u, the
corrections are of order 1/M :

≈ −
1

12
h+

1

12

h2

u
·

Thus, for small enough systems, or small enough u, the
phase sensitivity is M∆E(u) ∝ −uM ; this behavior re-
sults from the zone boundary contribution.
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Fig. 1. Finite size corrections to the ground state energy for
V = 0. The points (�·, +) are numerical data for a 40-site sys-
tem, with periodic or anti-periodic boundary conditions. The
dotted line shows the ground state energy in the thermody-
namic limit, ∝ Mu2 lnu, the dashed line is the energy with
the corrections according to equation (10).

For V 6= 0, we combine the treatment of Loss [19] of a
Luttinger liquid on a closed ring with the scaling equation
(7), and a first order perturbative calculation, with the
following result:

M∆E(λu) = M∆E(λu = 0)− λu
2π

v

(
M

M0

)2−g

. (11)

This is similar to the case of a single impurity [14], but
valid in a restricted regime only. This estimation cannot
be extended to large M or u, because, in a finite sys-
tem with a gap ∆(u), the “free motion” is only seen if
L/ξ ∝ M∆(u) ∝ Mu is small. For larger systems, the
phase sensitivity depends exponentially on the correlation
length, as discussed in [20]. In addition, we have neglected
the renormalization of the interaction parameter g, see
equation (8), which is reasonable only for V < 0, as can
be seen easily by integrating the RG equations (7, 8). For
example, only the samples with u = 0.01, for system sizes
M = 24 and M = 50, can be fitted with equation (11).
Already for u = 0.05 and M = 24 deviations from the first
order treatment are obvious; compare Figure 2.

Our aim is to determine quantitatively the phase
boundary for the dimerized XXZ model (λV = λt), and
to compare the results with those in the case of λV = 0.
In the latter case, one may compare with results obtained
from the massive Thirring model, or the RG equations.
In our density matrix renormalization group calculations
[21], we kept 1000 states and performed 9 finite lattice
sweeps. First, consider λV = 0. In order to determine the
phase transition near u = 0, we plot in Figure 3 the phase
sensitivity for M = 50 and 100, and small u, and confirm
that the transition occurs near V ≈ −1.4. (The transition
point is defined as the point where the phase sensitivity
becomes independent of the system size.) Proceeding to
higher values of u, we can follow the phase boundary, as
shown in Figure 4. Already at u = 0.4, we find a com-
pletely localized phase, and we verify the presumption
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Fig. 2. Comparison of numerical data with equation (11); λt =
1, λV = 0, M0 ≈ 2. The (�) are numerical data for u = 0 and
M = 50, in apparent agreement with the analytical result,
equation (9) (full line).
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Fig. 3. Phase sensitivity versus interaction, for system sizes 50
and 100; u = 0.01 and 0.05, λt = 1, λV = 0. For comparison,
we include here and in Figures 4–6, the clean limit result (full
line).
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Fig. 4. Phase sensitivity versus interaction, for u = 0.1 . . . 0.4;
λt = 1, λV = 0. The respective upper data correspond to
M = 50, the lower ones to M = 100.
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Fig. 5. Phase sensitivity versus interaction, for u =
0.01 . . . 0.1; λV = λt = 1. The respective upper data corre-
spond to M = 50, the lower ones to M = 100.
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Fig. 6. Phase sensitivity versus interaction, for u = 0.2 . . . 0.8;
λV = λt = 1. The respective upper data correspond to M =
50, and the lower ones to M = 100.

that the delocalized phase extends to the line V = −2. In
Figures 5 and 6, we show the difference between the two
cases, λV = λt versus λV = 0. There is no drastic change
in the qualitative behavior for small u, and the transition
point remains, as expected from (4) and the renormal-
ization group equation (7), at V ≈ −

√
2. We also find,

in the case λV = λt, that the phase sensitivity decreases
more slowly for an attractive interaction, and faster for a
repulsive interaction. Increasing the dimerization further,
we see that the delocalized phase is considerably larger
for λV = λt, and indeed extends to the point u = 1. In
comparison with the disordered model [14], the transition
occurs at a stronger interaction, and the delocalized region
extends to the line V = −2.

4 Interaction and dimerization

In the last section, we determined the u-V phase diagram,
under the assumption that the lattice distortion is a fixed
parameter. In a more realistic model, the harmonic lattice
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Fig. 7. Ground state energy versus λu. The system size is
M = 200.
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Fig. 8. Ground state energy versus λu. The system size is
M = 100.

energy will compensate the energy gain of the fermions
or the spins, respectively, resulting in a finite equilibrium
value of u.

We consider the ground state energy for periodic
boundary conditions, studying the lattice effect for
−2 < V < 2 first. The numerical data (see Figs. 7 and
8), obtained for 100- or 200-site systems, while keeping
about 300 to 400 states (for about 100 sites the finite size
corrections are very small and the term linear in u is ab-
sent), show that we can distinguish three regimes. For V
between −2 and 0, the gain in the fermionic energy grows
parabolically, ∆E(λu) ∝ −(λu)2. For 0 < V < 2, the
energy gain is stronger, ∝ uα, with an exponent which
reaches its minimum of 4/3 at V = 2, where correlations
change the behavior.

Explicitly, from an analysis of the massive Thirring
model, one finds [22] the energy gain, ∆E(λu) = E(λu)−
E(u = 0), to be given by

−
√

2 < V < 0 : ∆E(λu) = c1u
α − c2u

2,

α = 2/(2− g) > 2;

0 < V ≤ 2 : ∆E(λu) = −c1u
α + c2u

2,

4/3 < α < 2, (12)

V =2
V =2
V =1
V =1
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∆
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Fig. 9. Numerical versus analytic results. The full line corre-
sponds to ∆E(λu) = −E0[1.3(λu)8/5 − 0.1(λu)2], the dashed
line to ∆E(λu) = −E0[0.87(λu)4/3 − 0.044(λu)2 ], where E0 =
2Mt/π.

with c1 > c2 > 0; compare Figure 9. The non-quadratic
term can also be obtained from a self-consistent treat-
ment of the perturbation. In this so-called self-consistent
harmonic approximation (SCHA) [11,23] an optimal
quadratic approximation for the periodic potential around
one of its minima is chosen, which corresponds to the fol-
lowing replacement:

U cosnϕ→ U
[
1−

n2

2
(ϕ2 − 〈ϕ2〉)

]
e−n

2〈ϕ2〉/2; (13)

here, explicitly,

〈ϕ2〉 =
g

2
ln

2π

l0q0
, q2

0 =
ngU

v
e−n

2〈ϕ2〉/2 =
∆2

v2
· (14)

The quadratic term in equation (12) is related to the tun-
neling between the minima of the periodic potential [24].
The logarithmic dependence on u for V = 0, which was
found in [18], is contained in the above formulas:

V = 0 : ∆E0 = −
Mt

π
(λu)2(ln

4

λu
− 0.5)

V ≈ 0 : ∆E = ∆E0 −
MV

π
(λu)2 ln2 4

λu
· (15)

Adding the harmonic lattice energy, MK0u
2/2, we real-

ize that a finite equilibrium dimerization cannot be be
stabilized for an attractive interaction. For small |V |, the
second logarithmic term in (15) always leads to a positive
slope of ∆E(λu) at u = 0; and for large (negative) |V |, we
find, as shown in the previous section, a delocalized phase
for small u.

For the non-interacting case (V = 0), the stable dimer-
ization λu0 and the energy gain are given by well-known
expressions [23] for CDW-systems. With γ = λ2t/K0, the
results are

λu0 ∝ e−1/γ ,

∆(λu0) ∝ e−1/γ , (16)

Etotal(λu0) ∝ e−2/γ .
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For a repulsive interaction, we find the following algebraic
dependences:

λu0 ∝ γ
2−g
2−2g ,

∆(λu0) ∝ γ
1

2(1−g) , (17)

Etotal(λu0) ∝ γ
1

1−g ,

and, for example,

V = 1 : λu0 ∝ γ5/2, Etotal(λu0) ∝ γ4;
V = 2 : λu0 ∝ γ3/2, Etotal(λu0) ∝ γ2.

Another interesting quantity is the curvature of the to-
tal energy at the minimum, which is related to the zone
boundary phonon frequency, ω2kF . For a decoupled system
(λ = 0), the curvature is given by K0, the bare value. The
fermion-lattice coupling changes this quantity as follows:

V = 0 : E′′total(u0)/M = γK0

V > 0 : E′′total(u0)/M = K0(2− α). (18)

We thus conclude that for interacting fermions, the soften-
ing of the phonon at the zone boundary does not depend
on the coupling strength γ, but on the exponent of the
energy gain of the fermions only.

Next we consider the regime V > 2, where a correlation
gap develops, for the “clean” case given by [25]

V & 2 : ∆(V ) ∝ e−π
2/
√
V−2,

V →∞ : ∆(V ) ∝ V. (19)

A gap also develops in a frustrated model, i.e. when next-
nearest-neighbor coupling is included, for V = 2 and pro-
vided that Vfrust > V cfrust. This is a consequence of a
relevant 4kF -backscattering process, and believed to be
relevant for CuGeO3 [26,27]. As shown in [28], a cos 4ϕ-
term leads to a Neel (Ising-type) or a dimer (frustration)
ground state, respectively, depending on its sign. Thus we
expect that a next-nearest-neighbor interaction will in-
crease the dimerization, while an Ising-type interaction
reduces it. Possible distinctive features between the frus-
tration induced and the externally, by λu, driven dimer-
ized state are discussed in [29].

Considering the numerical data for a strong repulsive
interaction, V > 2, see Figure 8, the energy gain is nearly
constant at first, when increasing V ; only the prefactor
is slightly reduced. Arguments supporting this observa-
tion are given below. Increasing the interaction, the en-
ergy gain is drastically reduced, the exponent approaches
again 2, and therefore no minimum is found in the to-
tal energy. To understand this behavior, we consider in
more detail the extrema of the combined sin-cos-potential,
U(ϕ) = −Ṽ cos 4ϕ− ũ sin 2ϕ, where ũ = −2πvgλu/l0, and

Ṽ = πvgV/l20. For a large interaction, the minima are at

sin 2ϕ0 = ũ/(4Ṽ ), and the expansion reads

U(ϕ) ≈ −Ṽ −
ũ2

8Ṽ
+

(
8Ṽ −

ũ2

2Ṽ

)
(ϕ− ϕ0)2. (20)

So for a strong interaction, it is possible to consider the
u2-terms in the potential as a small perturbation to the
exact results [25]. Note that, for a strong interaction (i.e.
the renormalized g is ≈ 0), fluctuations are not important
since 〈ϕ2〉 ≈ 0. These arguments support the result, ob-
tained numerically, that the energy gain is quadratic in u.
For large u, on the other hand, the minima are located at
cos 2ϕ0 = 0, and the expansion for small interaction reads

U(ϕ) ≈ (Ṽ − ũ) + 2(ũ− 4Ṽ )(ϕ− ϕ0)2. (21)

For an interaction V ≈ 2, where the effective influence of
the Ṽ cos 4ϕ-term is expected to be small, we repeat the
perturbation analysis, i.e., we evaluate first the ũ sin 2ϕ-
term within the SCHA; thus ∆(u) ∝ u2/3. Adding then
the interaction term to the gapped system, and taking into
account the fluctuations, the dimerization gap is reduced:

∆2(u)→
∆2(u)

(1 + V )
, V =

V

πv
· (22)

For a frustrating interaction, there is no change in the
minima, and we find, for a small frustration, a similar
expression to (22), and for a stronger frustration, a linear
increase in u.

To check the validity of the perturbation analysis at
V → 2, we compare with results from the SCHA and
from field theory. In the evaluation of the SCHA scheme,
which considers both perturbations on an equal footing
following (21), we find the following gap equation, which
can be solved for g = 1/2:

∆2 = ũ

(
l0∆

2πv

)g
− 4Ṽ

(
l0∆

2πv

)4g

; (23)

the result is:

∆(u, V ) =
∆(u)

(1 + V )2/3
· (24)

Clearly, the exponent of the denominator does not coin-
cide with the one in (22).

However, a more careful treatment, particularly with
respect to the marginality of cos 4ϕ at V = 2, introduces
a logarithmic correction to the dimerization gap [4], given
by

∆(u, V ) ∝
∆(u)

[1 + V ln (v/∆(u))]1/2
· (25)

This logarithmic term is a consequence of the scaling of
the marginal operator V (L) = V (1 +πV lnL)−1, see [30],
and therefore is not found within both of the above con-
sidered approximations. The remaining difference between
(24) and (25), namely the different exponents, can be ex-
plained by higher order contributions [30]. Thus the per-
turbation approach, which led to (22), is rather close to the
correct result, (25), and even the simple SCHA is not too
far off, as it shows that the interaction essentially changes
the prefactor, i.e. the gap is ∼ ∆(u).
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Fig. 10. Phase diagram. The symbol (�·) denotes the delo-
calized region for λV = 0. The delocalized region increases
when λV = λt, as indicated by the (+). The localized region
is marked by (�· ).

The observation that a repulsive interaction in the one-
dimensional Hubbard model can enhance the dimerization
[31] can be explained now in the following way: for small
U , where the charge gap is small, we find an energy gain
Echarge ∝ Espin ∝ tu4/(2−gc), with the corresponding in-
teraction parameters gs = 1 for the spin and gc for the
charge. At half filling, an intermediate U leads to a large
enough gap to push down the dimerization in the charge
channel, but in the spin channel, no gap appears, and the
system gains energy from the coupling to the lattice. The
charge gap reduces, nevertheless, the prefactor from t to
t2/U .

5 Summary

In summary, we have shown that a periodic distortion of
the lattice is irrelevant for V < −

√
2, resulting in a delo-

calized phase. The transition point, Vc(u = 0) = −
√

2,
is not modified by the way of coupling to the lattice.
However, the extension of the delocalized phase depends
strongly on the coupling to the interaction, i.e. the pa-
rameter λV . For the spin model (λV = λt), the delocalized
region is considerably larger than for the case λV = 0. In
comparison with a random disorder model [14], the most
important difference is the fact that the delocalized region
extends down to the line V = −2. The phase diagram is
summarized in Figure 10. Due to the difficulties in deter-
mining precisely the point where the curves for different
system sizes coincide, we can plot only a rough phase di-
agram; nevertheless the transition seems to be steeper for
λV = λt, compared to the case λV = 0.

Including the harmonic lattice energy, we find that the
dimerized state is stable, i.e. the total energy develops a
minimum at a finite u0, for a repulsive interaction only.
With increasing interaction, the dimerization increases
even further, provided no interaction induced, competing
ordering occurs. A schematic plot is given in Figure 11.
Furthermore, already at V = 4, no equilibrium dimeriza-
tion develops, as can be seen from the preliminary data

u0

V

 1 2 3 4

Fig. 11. Schematic plot of the equilibrium dimerization λu0

versus interaction at fixed K0.

V = 2

V = 4 u = 0.05, λV = 0 4

u = 0 ×

u = 0.05, λV = λt ×+

u = 0.05, λV = λt �
u = 0.05, λV = 0 +

u = 0 �

1/M

∆
(u
,V

)

0.10.080.060.040.020
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0.6

0.4
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0

Fig. 12. Gap versus inverse system size for various interac-
tion strengths and dimerizations. The fits are extrapolations,
as mentioned in the text, and are meant as “guide to the eye”.

shown in Figure 12, where we plot the gap versus inverse
system size. (The lines are obtained from a polynomial fit
in 1/M for the case u = 0, and an exponential fit as men-
tioned in [32], respectively.) Obviously, no additional gap
from the dimerization is seen for V = 4. In contrast, for
smaller V , especially V = 2, the dimerization contribution
is significant.
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